Friday, November 25, 2016

Lab 19: Conservation of Energy/ angular momentum; Lab Partner: Jamie Lopez; Lab: 11-21-16

2) In this lab, we will approach to prove that energy and angular momentum is conserved when an object is undergoing angular motion and find the height the meter stick elevates before rest.

3) Just as translational and rotational motion relate in kinematics, they also relate in conservation of energy and angular momentum. We will prove our theory in conservation of energy and angular momentum is true and compare the results to our experiment. In this experiment, we will only show two types of energy that the object will be influenced to: gravitational potential energy and kinetic energy. Here is a step by step illustration to show that energy and momentum is conserved. 
Once the meter sticks collides inelastically with the mass of the class, both object are now undergoing kinetic energy to potential energy until both masses reach its' highest point. To solve for the angle which the masses reach its's highest point, we derive for theta using the energy theorem. The height will be the product of the center of mass and one minus cosine theta. These are what our results came to be.

4)
Here is a picture of our apparatus to prove our theory is correct. The second picture is a video of our apparatus and clicking in the points per frame. Those points will be used as displacements while the object goes into angular motion.

5)
This is the only data we had to measure for our theoretical and experimental results. The first picture is just the masses and the distance of the pivot point we measured to plug into our equation. The second picture are the data points of the y-axis vs time. We placed the center point of axis where the meter stick is perpendicular to the ground but not touching. We measured that at zero meters. The picture in 4.2 is a better visual for better understanding.

6)

7)With the data points according to logger pro, this is a graph of the displacement of the both objects going in rotational motion. It is almost similar to a sine function. But of course, after the zero meter point, the slope decreases meaning the meter stick collided with the mass of the clay so the angular velocity decreased.

8) The results we got in our theoretical calculation is really close to our experiment. Both heights of the lab results range at one tenth meter above ground. This result still proves that conservation of energy and angular moment around object can be conserved.

No comments:

Post a Comment